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Abstract
Accurate stream topography measurement is important for
many ecological applications such as hydraulic modeling
and habitat characterization. Habitat complexity measures
are often made using visual approximations or total station
(TS) surveying that can be subjective and have limited
spatial resolution. Terrestrial laser scanning (TLS) can
measure topography at a high resolution and accuracy. Two
methods, TS surveying and TLS, were compared for measur-
ing complex topography in a boulder-dominated 100 m
forested reach of the Staunton River in Shenandoah
National Park, Virginia. The mean absolute difference
between the two datasets was 0.11 m with 82.3 percent of the
TS data within �0.1 m of TLS. The TLS dataset was processed
to remove vegetation and create a 2 cm digital elevation
model (DEM). An algorithm was developed for delineating
rocks within the stream channel from the DEM. A common
ecological metric based on the structural complexity of the
stream, percent in-stream rock cover, was calculated from
the TLS dataset, and the results were compared to estimates
from traditional methods. This application illustrates the
potential of TLS to quantify habitat complexity measures in
an automated, unbiased manner.

Introduction
The complexity of stream habitat plays an important role in
ecological processes such as organic matter processing,
periphyton growth, and nutrient dynamics, and, in turn,
affects aquatic species diversity and population dynamics
(Gorman and Karr, 1978; Biggs and Stokseth, 1996; Brown,
2003; Lepori et al., 2005). Habitat complexity is difficult to
quantify objectively (Downes et al., 2000), particularly at
small scales (Sanson et al., 1995), creating the need for
improved, high-resolution techniques for measuring stream
morphology (Legleiter et al., 2004). The size and location of
flow obstructions such as boulders are important factors
influencing hydraulic habitat complexity by creating flow
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refugia, turbulence, and velocity gradients utilized by
aquatic organisms (Fausch and White, 1981; Hayes and
Jowett, 1994; Biggs et al., 1997; Rempel et al., 1999).
Hydraulic models are being used to predict the influence of
these obstructions on 2D and 3D flow patterns (Crowder and
Diplas, 2000; Shen and Diplas, 2008; Kozarek et al., 2010;
Waddle, 2010). However, model accuracy is limited by the
measured topography (Pasternack et al., 2006) and for many
studies individual boulder shapes are represented by only a
few measured points (Crowder and Diplas, 2006; Clark 
et al., 2008; Kozarek et al., 2010). Other habitat complexity
measures, such as in-stream rock cover and substrate
composition, have long been recognized as important
features for organisms at various scales, ranging from
macroinvertebrate to fish (Wesche et al., 1987; Beisel et al.,
2000; Peckarsky et al., 2000; Venter et al., 2008). However,
percent rock cover is typically measured qualitatively or
estimated visually (Kaufmann and Robison, 1998; Willis 
et al., 2005). Additionally, accuracy and precision of rock-cover
measures decrease as the substrate heterogeneity of the site
increases (Wang et al., 1996).

One strategy for quantifying habitat complexity is to
measure the structural complexity of stream topography
(Bartley and Rutherfurd, 2005). Two categories of surveying
methods are: (a) point measurements, and (b) remote sensing.
Field-based point measurements are surveyed with tools such
as total station (TS) instruments or global positioning system
(GPS) receivers. These methods can be accurate where points
are taken; however, they can be time intensive, be affected by
user bias choosing representative point locations, and have
limitations in spatial resolution and scope (Heritage and
Hetherington, 2007). Remote sensing is performed with tools
such as aerial and satellite imaging systems or aerial laser
scanning (ALS), also known as aerial lidar systems. ALS has
been used in many studies to generate digital elevation models
(DEMs) or canopy height models (CHMs) with typical resolu-
tions ranging from 10 to 200 points/m2 and elevation errors of
� 0.15 m (Charlton et al., 2009; Devereux and Amable, 2009).
Marchamalo (2007) implemented ALS to perform 2D hydraulic
modeling for trout habitat characterization and noted the
advantage of ALS for large-scale studies. While aerial remote
sensing has the ability to provide greater spatial coverage, it
has limited resolution and precision for measuring meso-
habitat complexity such as individual boulders and undercut
banks (Heritage and Hetherington, 2007).



Figure 1. Study site map locating the 100 m reach of the
Staunton River within Shenandoah National Park, Virginia. 

Terrestrial laser scanning (TLS), or ground-based lidar,
can generate high-resolution point clouds and is not limited
to overhead views such as with ALS, therefore increasing
data collection and decreasing shadow effects of complex
topography. TLS data can be used to create surface models
with resolutions ranging from 1,000 to 10,000 points/m2 and
absolute errors less than � 0.02 m (Entwistle and Fuller,
2009). There is potential for using TLS to measure small-
scale changes and spatial features in fluvial systems (Rosser
et al., 2005; Hetherington et al., 2007). TLS has been utilized
in both small- and large-extent applications ranging from
measuring 1 m2 gravel surface patches at 1 mm resolution
(Hodge et al., 2009) to measuring a 150 m � 15 m stream
reach at 1 cm resolution (Heritage and Hetherington, 2007).

The accuracy and resolution of the surveying method
combined with the spatial interpolation method play
important roles in the creation of DEMs. The spatial error of
a DEM is related to the topographic complexity of a stream
with greater errors occurring at slope brakes with an insuffi-
cient number of point measurements (Heritage et al. 2009).
As a result, there is a need for more measurements in areas
of high spatial variability, such as streambank edges or in-
stream boulders. The potential for TLS to provide high-
resolution surface models has led to TLS being used to
quantify the errors resulting from calculating streambed
scour and fill (Milan et al., 2011) and streambank retreat
(Resop and Hession, 2010), demonstrating the importance of
accounting for spatial variability.

TLS has been applied to measuring parameters such as
surface roughness and grain size, which are difficult to
estimate for hydraulic models (Smith et al., 2007). Entwistle
and Fuller (2009) derived grain size from a TLS DEM for a dry
streambed based on the standard deviation of elevations
within a moving window. Heritage and Milan (2009) used
TLS to measure bed roughness for bar-scale stream topogra-
phy (0.15 m moving window over a dry gravel point bar)
and noted the potential for TLS to replace traditional manual
sampling methods. A major advantage of lidar is its ability
to measure high point densities from complex topographies
in a short amount of time, providing small-scale measures of
roughness and variability (Glenn, 2006). TLS has also been

utilized for measuring vegetation density as a roughness
factor for hydrodynamic floodplain flow models (Straatsma
et al., 2008). The focus of this study, however, is to quantify
structural elements (large cobbles and boulders) within the
stream channel that create local flow and sediment diversity
(Crowder and Diplas, 2002; Yarnell et al., 2006).

The objectives of this study were to: (a) delineate the
location and size of individual rocks within a stream
channel from high-resolution DEMs created from TLS data,
and (b) compare traditional methods (TS surveying and
visual estimation) with TLS for deriving measures of habitat
complexity, such as in-stream rock cover, at a sub-reach
scale for a brook trout (Salvelinus fontinalis) stream in
Virginia.

Methods
Study Site
The study site was a 100 m forested stream reach on the
Staunton River located in Shenandoah National Park,
Virginia (Figure 1). The second-order stream is classified as
a combination of step pool and cascade morphology with an
average stream width of 3.5 m (Roghair and Dolloff, 2005).
The site is characterized by many cobbles and boulders, a
large section of undercut bank, and mature bank vegetation
with very little understory. Kozarek et al. (2010) studied this
reach to model 2D hydraulic complexity for characterizing
brook trout (Salvelinus fontinalis) habitat and visually
estimated percent rock cover. This is a sub-reach of a 1 km
reach of the Staunton River sampled bi-annually to monitor
brook trout population (Roghair and Dolloff, 2005). The sub-
reach encompassed six habitat complexes (HC), defined as 10
to 20 m sub-reaches with several pools and riffles divided
by low-flow barriers to fish movement (Roghair and Dolloff,
2005).

Field Methods
The stream reach was surveyed with a Topcon GTS 230W
TS in May 2007. The TS survey was completed over four
days with approximately 10 hours of field work per day for
a total of 40 hours. In addition, an Optech ILRIS-3D portable
TLS was used to survey the reach over three days in July
2007 with approximately six hours of field work per day for
a total of 18 hours. Six benchmarks were used for aligning
both the TS data and the TLS data.

The TS survey resulted in 2,701 points for characterizing
the complex topography of the streambed, banks, and
boulders. Mean point density was approximately 2
points/m2; however, point density was higher in complex
areas and less dense in relatively uniform topography. The
reported accuracy of the TS is � 3 mm � 3 mm per km of
measuring distance (Topcon, 2010). To characterize individ-
ual boulders, points were taken at the apex(es) and around
the base. Because of the curvature of the stream, two
traverses were required to survey the 100 m stream reach;
therefore, six benchmarks were used on large boulders to
align and error-check the data. Additional details for the TS
data collection can be found in Kozarek et al. (2010).

TLS was used to survey the stream during baseflow
conditions. The scanner was moved to 25 locations around
the stream to collect data from different angles and mini-
mize shadowing effects of the laser. A total of 89 scans were
taken of the entire reach with an average of 1 cm point
spacing or 10,000 points/m2 (Figure 2). Overlap was
required between scans to assist with the alignment process.
Both first and last pulse returns were used during measure-
ment. The average distance of the scanner to the stream was
12 m, with scan distances ranging from 5 to 20 m. Based on
the beam divergence of the laser system (0.00974°), the
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scanner has a footprint of 14 mm at the average distance
and has an accuracy of 7 to 8 mm at a distance of 100 m
(Lichti and Jamtsho, 2006; Optech, 2010). Large triangular
targets serving as physical reference points were placed at
the six benchmarks and used to align the TLS data with the
TS data.

Data Alignment and Processing
The TLS data were imported into PolyWorks version 10.1.6
(InnovMetric Software Inc., Quebec, Canada) one scan at a
time and aligned into the same coordinate system using the
IMAlign tool. Starting with the first two scans, similar
identifiable features in the point clouds, such as rocks and
fallen logs, were used to provide control points for a manual
alignment. An automatic alignment algorithm was then used
to best-fit the data to within a mean error of � 0.0001 m.
The rest of the scans were aligned in a similar, iterative
manner. The entire TLS point cloud was then aligned to the
same coordinate system as the TS survey data using the
benchmarks and the best-fit algorithm. After alignment, the
dataset was manually edited to remove large vegetation
(shrubs and trees). TLS data processing in PolyWorks was

performed over many days, with 9.5 million points in the
final dataset.

Data Comparison
Once the datasets for both methods were aligned, the
individual points from both datasets were compared. The
point differences between TS and TLS were measured based
on the point-to-point distances. TS point elevations were
compared to the closest TLS data point within a 5 cm square
grid around the point. The underwater streambed surface
was not scanned by TLS due to the distortion of TLS near-
infrared pulses by the water surface; as a result, TS streambed
points were excluded from point comparison. While topo-
graphic data of the streambed is important for applications
such as hydraulic modeling, the purpose of this paper is to
extract information using TLS on stream topography above
the baseflow water surface (such as protruding rocks).

Delineating In-stream Rocks
The TLS data were imported into MATLAB version R2009b
(MathWorks Inc., Natick, Massachusetts) and converted into
a 2 cm DEM. The minimum elevation was selected for each 
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(a)

(b)

Figure 2. (a) A section of the Staunton River (looking upstream), and (b) the
same section represented by a TLS point cloud with an average 1 cm point
spacing.



smaller rocks (those with diameters approaching 0.1 m) were
not explicitly measured and as a result could not be com-
pared with the TLS delineation results.

Ecological Metrics
The database of in-stream rocks delineated from TLS was
then used to calculate two habitat complexity measures: 
(a) percent in-stream rock cover, and (b) distribution of grain
size and rock area. These measures were then compared
between traditional methods (i.e., visual estimation) and TLS
for the six HCs within the stream channel. In-stream rock
cover was defined as the percent area of rocks protruding
from the stream surface during baseflow conditions. For
visual estimation, two surveyors approximated the percent
of the channel area covered by protruding boulders in
August 2008. For TLS, grain size and plan-view area were
calculated for each delineated rock. Grain size diameter was
estimated from the plan-view area assuming a circular
shape. Rocks were divided into two size classes based on
their diameter: cobbles (greater than 0.1 m and less than
0.256 m) and boulders (greater than 0.256 m). Percent rock
cover was calculated as the total plan-view area for all rocks
within each HC divided by the total in-stream area. Simi-
larly, percent rock cover was determined for both size
classes (cobble and boulder). Within each HC the distribution
of rocks was determined based on the mean, standard
deviation, and maximum of individual rock areas as well as
the number of rocks.

Results and Discussion
Data Comparison
Out of the 2,701 points measured with the TS, 596 were
either located in the streambed (topography not scanned by
TLS) or in small gaps in the TLS dataset. The other 2,105 TS
points had a mean absolute elevation difference with the TLS
data of 0.11 m and a standard deviation of 0.36 m. The
point differences are comparable to results found by similar
studies (Heritage and Hetherington, 2007), with 82.3 percent
of the TS data within � 0.1 m of the TLS data. The differences
between the raw points measured by both methods are most
likely due to the measurement error of the TS or any vegeta-
tion or large woody debris (LWD) that was not removed from
the TLS data. Other potential errors include the measurement
error of the laser scanner and the error from aligning the
two datasets to the same coordinate system using the
benchmarks.

Delineating In-stream Rocks
The delineation algorithm performed fairly well in terms of
identifying individual rocks within the stream in an auto-
mated manner, based on comparing the TLS DEM to the
delineation results (Figure 3). It is difficult to fully validate
the results without a higher resolution TS survey or detailed
field measurements, although some comparisons can be
made with the existing TS data. There are obvious errors,
such as rock clusters that were not fully delineated and
other objects in the stream, such as LWD, which were
delineated and classified as rocks. However, the method
used for this study shows how relatively simple image-
processing algorithms can be used with high-resolution
stream topography data to delineate rock boundaries. The
results would be valuable information for hydraulic model-
ing due to the influence that boulders have on flow com-
plexity as shown by Crowder and Diplas (2000) and Kozarek
et al. (2010).

A comparison was made between the TS point measure-
ments and the TLS delineation algorithm using 34 rocks
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2 cm grid cell (Henning and Radtke, 2006) to increase the
probability of using ground points for the DEM. Pixels in the
DEM with a “no data” value were assumed to represent 
the water surface. A 5 � 5 majority filter was used to fill in
small data holes in the DEM (isolated “no data” pixels located
within the rock surface area) or remove isolated surface
pixels from the water surface area. For “no data” pixels that
were determined to be part of the rock surface area, the
elevation was interpolated using a 3 � 3 mean filter. A
binary grid was then created from the DEM representing
either water surface or rock surface.

The rock delineation algorithm consisted of multiple
image-processing functions designed to filter the TLS DEM
and to define boundaries between rocks and the water
surface and between rocks and other rocks. Similar algo-
rithms have been developed in the field of forestry for
delineating tree stands using remotely-sensed data (Ander-
sen et al., 2001; Culvenor, 2002; Koch et al., 2006). The DEM
pixels located within the stream channel were selected
based on the stream-surface boundary defined by the water-
edge locations measured at baseflow by the TS. Using the
rock/water binary grid, continuous boundaries were created
between the water surface and the rock areas.

Boundaries were then defined between individual rocks.
A 5 � 5 low-pass (mean) filter was performed over the
entire DEM to smooth the surface. A 7 � 7 local minima
filter was used to determine the valley in the DEM and
define the boundaries between rocks, similar to the method
used by Culvenor (2002) to delineate tree boundaries. The
rock-boundary layer was then merged with the water-
boundary layer to create a single boundary layer. The
boundary layer was processed with multiple filters to
remove dead ends and connect small gaps, resulting in
continuous, well-defined boundaries representing the areas
of one or more rocks (Culvenor, 2002). An image-processing
skeleton function was then used to reduce the width of the
boundary to one pixel.

A sensitivity analysis was performed to evaluate the
effect of the local minima filter size on the balance between
Type I (false positives) and Type II (false negatives) errors in
the delineation process. Type I errors occur when rock
delineation boundaries are created that do not really exist
and Type II errors occur when the algorithm fails to delin-
eate a cluster of rocks. Minima filters of increasing size 
(3 � 3, 5 � 5, 7 � 7, and 9 � 9) were used in the algorithm
and the resulting rock size distributions were compared.

The final step was to identify individual rocks in each
area using a top-hat transformation, similar to the method
used by Andersen et al. (2001) to identify tree crowns. A
top-hat filter with a disc size of radius 15 pixels was used to
identify the largest rocks in the DEM. A threshold and
morphological open filter were then used to isolate the rock
boundaries. Starting with the largest rock in the stream
channel, the area defined by that rock was removed from the
DEM. This process was repeated with smaller morphological
filter sizes until all of the rocks were defined, using a 0.1 m
minimum rock diameter threshold (a disc size of radius 
3 pixels). The result was a database of rock size and location
for the entire reach.

The results of the TLS rock delineation algorithm were
compared to the locations and 2D plan-view area of 34 rocks
measured from the TS survey. The number of TS points used
to define the measured rock surfaces ranged from four to
nine. The rocks in the TS dataset were matched to the
nearest rock from the delineated TLS dataset. Due to the fact
that the TS field measurements were of much lower resolu-
tion than the TLS dataset, they were used to compare with
the general size and location of delineated rocks. Another
limitation of the TS point data is that the boundaries of



selected from the stream reach (Figure 4a). The algorithm
performed well at identifying the boundary, size and
location of rocks measured in the field, based on the plan-
view areas. There was general agreement (R2 = 0.83)
between the rocks measured with the TS and the rocks

delineated from TLS (Figure 4b). The root mean square error
(RMSE) was 0.27 m2, or 55 percent with respect to the
average delineated rock area and 74 percent of the delin-
eated rocks had a center of mass within 0.2 m of the TS
measured rock. In general, the TS data underestimated the
size of individual rocks compared to TLS. While small
differences in area between the two datasets can be attrib-
uted to the difference in resolution, larger differences are
likely a result of errors within the TLS dataset and the
delineation algorithm.

Sources of uncertainty in the rock delineation process
include spatial variability (due to the complexity of the
surface being scanned), parameter error, and model error.
Parameter error consists primarily of measurement errors
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(a)

(b)

Figure 3. Plan-view maps of Habitat Complex 2
showing (a) the raw 2 cm TLS DEM with white
space representing the water surface and small
data gaps, and (b) individual delineated rock
boundaries.

Figure 4. (a) Plan-view areas of example in-stream
rocks measured with the both the TS and TLS, and
(b) comparison between plan-view rock areas for 34
individual rocks measured by both TS surveying and
TLS delineation.

(a)

(b)



overwhelmingly contributed to the percent rock cover for
each HU (94 percent of total rock area) (Table 2). The median
grain size (D50) of rocks larger than 0.1 m (the minimum
detectable rock size by the delineation algorithm) was 0.34 m.
The limitation with TLS is that particles below the water
surface were not measured. The algorithm was also limited
to identifying rocks larger than 0.1 m due to the data
resolution. As a result, this TLS rock delineation only provides
a partial, large-scale depiction of substrate composition.

Table 3 and Figure 6 show how the distribution of rocks
varies between different HCs in the reach. From this informa-
tion, one can observe in-stream areas defined by fewer,
smaller rocks (HCs 1 and 6) as well as areas that are more
densely covered (HC 2). These results are similar to the
visual estimates of rock cover made in the field. However,
with TLS more information can be quantified about the
structural complexity of the stream and the spatial hetero-
geneity within and between HCs. Measures such as these
could potentially be used to improve habitat characterization
indices by providing automated, unbiased information.
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TABLE 2. THE PERCENT IN-STREAM ROCK COVER FOR EACH HABITAT COMPLEX
(HC) DETERMINED USING VISUAL ESTIMATION AND TLS DELINEATION; THE ROCKS

DELINEATED USING TLS WERE ALSO CLASSIFIED AS COBBLE OR BOULDER BASED ON
THEIR GRAIN SIZE DIAMETER (D): COBBLE (0.1 M � D � 0.256 M), BOULDER

(D � 0.256 M)

HC Rock Rock Cobble Boulder 
Cover (%) Cover (%) Cover (%) Cover (%)

(Visual) (TLS) (TLS) (TLS)

1 10 30.3 1.4 28.8
2 55 44.2 2.6 41.5
3 40 29.5 1.3 28.2
4 55 33.9 2.3 31.6
5 65 41.7 2.9 38.7
6 30 23.5 1.1 22.4

Figure 5. The distribution of in-stream rock grain size
diameter for the 1,088 rocks in the stream reach
identified by the TLS delineation algorithm (limited to
rocks greater than approximately 10 cm).

that occurred during the scanning process, such as gaps in
the TLS data caused by shadowing and the presence of
vegetation and LWD. Modeling error can be described by the
Type I/Type II errors inherent to the delineation process.
Type I errors occur when a rock is delineated that doesn’t
really exist, such as when a large rock is broken into many
smaller rocks by the algorithm (which happened rarely) or
when other in-stream objects were identified as rocks (such
as LWD, which were not identified separately by the algo-
rithm). Type II errors occur when the algorithm fails to
delineate a cluster of rocks, identifying the cluster as a
single, large rock.

A sensitivity analysis was performed by varying the size
of the local minima filter used by the algorithm. Pixels
identified as being local minima were used for defining the
valleys that create the boundaries between rocks. As the
filter size increased, it became less likely that a pixel was
classified as a local minimum, fewer boundary pixels were
identified over the entire reach, and as a result, the number
of delineated rocks decreased and the average rock size
increased (Table 1). Fewer individual rocks identified could
lead to more Type II errors. As the local minima filter size
decreased, pixels were more likely to be local minima. In
this situation, the number of rocks increased and the average
size decreased, making Type I errors more likely. The large
range in the number of rocks and average area shows how
sensitive the delineation algorithm is to the size of the local
minima filter and demonstrates that more work is needed to
optimize the algorithm.

Ecological Metrics
The visual estimates for percent rock cover and the values
derived from TLS are summarized in Table 2. For the six
HCs, the rock cover estimated in the field ranged from 10 to
65 percent, while the calculations made from the TLS data
ranged from 24 to 44 percent. Ranking the HCs from smallest
to largest percent rock cover, both methods had the same
HCs for the lower three (1, 3, and 6) and upper three (2, 4,
and 5). In general, the visual estimates overestimated rock
cover with a mean absolute difference of 15 percent com-
pared to the TLS calculations. The smaller range of values
computed from TLS indicates the possibility that there is not
as much difference in percent rock cover between the HC
areas as estimated visually and demonstrates the advantage
of an unbiased method for calculating rock cover. It is
difficult to determine the true value of rock cover due to the
uncertainty of both methods and the fact that rock cover
depends on other variables such as stream flow (both
methods were performed at baseflow).

The in-stream rocks delineated from TLS were right-
skewed with respect to grain size, shown in Figure 5 by an
empirical cumulative distribution function (CDF) with a sharp
initial slope. It was determined that 71 percent of the 1,088
delineated rocks were classified as boulders (diameter greater
than 0.256 m) with the rest classified as cobbles. Boulders

TABLE 1. THE RESULTS OF THE SENSITIVITY ANALYSIS SHOW HOW THE SIZE OF
THE LOCAL MINIMA FILTER USED BY THE ROCK DELINEATION ALGORITHM CAN

GREATLY AFFECT THE DELINEATION PROCESS

Size of Local Number of Mean Rock 
Minima Filter Rocks Area (m2)

3 � 3 1,445 0.074
5 � 5 1,358 0.112
7 � 7 1,088 0.155
9 � 9 878 0.200



ments. The surface models generated by TLS can potentially
improve the accuracy of 2D and 3D hydraulic models and
decrease the uncertainty associated with measurement and
interpolation errors. The results from this study also have
the potential to reduce the uncertainty in reach-wide
measures for habitat assessment related to boulder and
cobble representation.

Here we presented an application of tree crown delin-
eation algorithms, previously used in forestry applications,
for processing TLS-generated DEMs of stream topography.
More research is needed to improve the data processing and
rock delineation algorithms and optimize the balance
between Type I and Type II errors. Optimization of the TLS
rock delineation algorithm would be improved with high-
resolution photography data for validation. More research is
needed to quantify the uncertainty in TLS. While the feature
extraction method presented in this study reduces the
uncertainty from qualitative measurements and interpola-
tion, the method introduces uncertainties resulting from the
TLS tool and delineation algorithm. The sensitivity analysis
demonstrates how the algorithm is sensitive to parameters
such as the size of the window used for filtering.
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TABLE 3. PLAN-VIEW AREA STATISTICS OF INDIVIDUAL ROCKS DELINEATED FROM
TLS FOR EACH HABITAT COMPLEX (HC) DEMONSTRATING THE DIVERSITY AND

SPATIAL HETEROGENEITY BETWEEN ADJACENT HCS

HC Mean (m2) St. Dev (m2) Max (m2) Number of Rocks

1 0.159 0.151 0.789 124
2 0.169 0.334 3.462 304
3 0.158 0.282 3.064 182
4 0.133 0.194 2.358 230
5 0.158 0.271 2.416 173
6 0.144 0.116 0.705 75

Figure 6. Plan-view showing the spatial distribution of individual in-stream rocks delin-
eated within each Habitat Complex (HC).

Conclusions
TLS has potential for producing high-resolution, quantitative
values for habitat complexity by enumerating cover provided
by protruding bed substrate. The measures of topographic
complexity generated from TLS could be used for further
investigations involving habitat characterization. Measure-
ments made using TLS for habitat metrics, such as in-stream
rock cover, are unbiased and automated, thereby reducing
the amount of uncertainty resulting from qualitative assess-



TLS is limited by its inability to survey underwater
topography; however, as demonstrated in this study, unbi-
ased ecological metrics can be derived from TLS data above
the baseflow water surface. Other potential ecological metrics
derived from these data include quantifying large wood
volume, shoreline vegetation, step-pool length, and topo-
graphic shading. However, the reflectivity of the laser is a
limitation when studying other characterizations of channel
morphology, such as bed substrate composition. TLS research
has been performed on dry streambeds (Entwistle and Fuller,
2009; Heritage and Milan, 2009), although this is not a
feasible option for sensitive fluvial systems, such as the one
in this study. Blue-green wavelength laser scanners have
been implemented for bathymetric surveys, although this
technology is currently only available for ALS (Wedding et
al., 2008). Until this technology is ready for ground-based
scanners, TLS should be combined with high-resolution
bathymetric surveying tools to generate more complete
surface models of stream topography for habitat complexity
measures.
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